
the Clir”HEIR. 205 Computer

NASA Technical Memorandum 4028

An Efficient Sparse Matrix
Multiplication Scheme for
the CYBER 205 Computer

Jules J. Lambiotte, Jr.
Langley Researcb Center
Hampton, Virginia

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

Introduction
Many of the important numerical techniques used

today to solve linear equations require repeated com-
putation of a symmetric matrix times a vector. Ex-
amples are the conjugate gradient method, with all
its variants, for solving simultaneous linear equa-
tions (refs. l and 2) and the Lanczos algorithm for
eigenvalue and eigenvector extraction (ref. 3). These
methods are particularly attractive when the matrix
is sparse since, unlike direct methods, they do not
require storage of the entire matrix. The matrix is
only used to multiply a vector, and thus one needs to
know only the nonzero elements and their positions
within the matrix.

The primary objective of this work has been to
develop software for the Control Data Corporation
CYBER 205 computer that provides an efficient
means for computing b = A x when A is an n x n,
symmetric, sparse matrix and x is a vector.

Because use of vector hardware instructions on a
vector processor has very definite implications about
the storage, a user’s goals of minimizing both the
required central processing unit (CPU) time and the
total storage needed to represent A often conflict.
Thus, a more specific objective of the work has been
to design the software so that it provides alternative
storage and computational procedures for the matrix
A and automatically selects the procedure which best
reflects the user’s relative concerns about minimizing
the two resources.

These objectives have led to the development of
a diagonal-based storage and computation scheme
in which a preprocessing subroutine, Q4CMPCTD,
chooses one of four storage methods for each diagonal
using CPU time and storage estimates and user-
provided resource weighting information. A matrix
multiplication subroutine, Q4CMPYD, can then be
called repeatedly to compute A x using the compact
form of matrix A.

Subsequent sections of the paper describe the rel-
evant CYBER 205 instructions used, the diagonal-
based algorithm with the trade-offs between the
methods, a description of the implementation used,
and the results for a sample sparse matrix.

Symbols
aj, k
A symmetric banded matrix

A(e)

bj
b

the j, kth element in the matrix A

the eth subdiagonal (or superdiagonal)
in A

the j t h element of b

right-hand-side vector in the matrix
equation Ax = b

BT bit vector

C FORTRAN array containing com-

C predicted CPU requirement

d fraction of nonzeros in a diagonal,
diagonal density

diagonal designator (e = 0 is main
diagonal)

pacted form of matrix A

e

m arbitrary diagonal length

n number of rows of matrix A

P number of 64-bit words needed for bit
vector

r weighted resource

S predicted storage requirement

X

z

Subscripts:

vector to be multiplied by matrix A

number of nonzeros in diagonal

W weight

min minimum value

j , k general indices

Abbreviations:

CPU central processing unit

MFLOPS millions of floating point operations

FORTRAN “not equal to” relation

.- per second

.NE.

CYBER 205 Characteristics
The CYBER 205 at Langley Research Center,

designated the VPS-32 there, is a vector processing
computer manufactured by Control Data Corpora-
tion, which has a peak computing rate of 400 mil-
lion 32-bit floating point operations per second
(MFLOPS) on certain computations. For the more
prevalent computations such as vector multiplication
or addition, this two-pipe configuration can achieve
up to 100 MFLOPS in 64-bit arithmetic mode. The
VPS-32 is a bit addressable, virtual memory com-
puter which has 32 million 64-bit words of central
memory.

The high CPU rates are achieved by operations
on long vectors whose components, by definition, are
consecutively stored in memory. However, if vector
lengths are short (say, 10 or less), the scalar CPU
speed makes serial computation superior.

In addition to the usual floating point arith-
metic operations (addition, subtraction, multiplica-
tion, and division), several nontypical hardware in-
structions exist which have proved useful in this
work. These are the vector compare, compress, ex-
pand, b i t count, gather, and scatter. Figure 1 demon-
strates their use. Note that the compress and ex-
pand sequence and the gather and scatter sequence
can be used to accomplish the same data movement.
The relative efficiency depends on the sparsity of the
data list being accessed. The compress and expand
instructions each take 10 nsec per element in the bit
vector (including off bits). The gather and scatter
instructions each require 25 nsec per element moved,
but since they move only nonzero elements, they may
be faster for sparse lists.

Diagonal-Based Matrix Multiplication
It is possible to describe the multiplication pro-

cess b = Ax for a matrix A in terms of elements of
each diagonal. Let A(C) denote the Cth superdiag-
onal (also the Cth subdiagonal since A is symmet-
ric) and let Ak(C) be the kth component; that is,
A k (l) = ak,k+e = ak+e,k. The procedure for com-
puting b = A x for the n x n matrix A is

End For

Note that if A is banded, C need range only from
1 to the bandwidth, and that if any diagonals are
identically zero, they can be easily identified and all
computation for them in equations (1) and (2) can
be omitted.

The diagonal-based scheme has been selected as
the foundation for this work for several reasons:

1. Nonzero structure of real problems-Many matri-
ces arising from finite difference or finite element
formulations naturally lead to a sparsity pattern
in which most of the nonzeros lie along a few of
the diagonals. The five-diagonal matrix arising
from central differencing of Poisson’s equation is
an extreme example. Of course, there the pattern
is so predictable that special storage techniques
are not needed; but for more complex equations
with more complicated differencing or for finite
element formulations using nonuniform elements,
the sparsity is not so easily specified.

2. Vectorization-The n - C multiplications and ad-
ditions in equations (1) and (2) can be carried out
by vect80r operations of length n - C.

3. Symmetry of diagonals-The Cth subdiagonal is
also the Cth superdiagonal. Since equations (1)
and (2) are identical in form, the storage and com-
putation most appropriate for the subdiagonal are
also most appropriate for the superdiagonal.

Storage Trade-offs
The vector computations implied in equations (1)

and (2) assume that A(C) is available as a vector of
length n - C. However, if the diagonal is relatively
sparse, one might not want to store the entire diago-
nal with all its zeros. In fact, if the diagonal is very
sparse, neither vector storage nor vector computation
is likely to be very efficient.

Described below are four types of diagonal storage
and associated computation to execute equations (1)
and (2). Note that types 3 and 4 differ only in the
computational scheme employed.

Type 1. Full vector-The entire diagonal is stored
including any zeros. Vectors of length n-C are
achieved using vector computation according
to the algorithm described by equations (1)
and (2). This mode is most efficient when A(C)
is very dense.

Compressed vector plus bit pattern-
Only the nonzeros are stored along with a bit
vector to give positional information within
the diagonal. The computation is identical
to that with type 1 diagonals after an expand
(see fig. l(c)) is performed to generate the full
diagonal A(!). The extra expand makes type 2
CPU time always exceed that for type 1, but
the storage can be considerably less.

Compressed vector plus row pointers
with serial computation-Only the nonzeros
are stored along with an index vector to pro-
vide positional information. The assumption
is that A(C) is so sparse and short that it would
be inefficient to expand the compressed vector
to use vector computation. Equations (1) and
(2) are executed serially making use of the row
indices stored in the index vector.

Compressed vector plus row pointers
with vector computation-The storage is iden-
tical to a type 3 diagonal. The difference lies in
t,he manner in which the computation is car-
ried out. The index vector is used to gather
(see fig. l(b)) the appropriate elements from
x and b, and then to scatter back out to b the
result of the computation which has been car-
ried out on vectors which have the length of

Type 2.

Type 3.

Type 4.

2

the number of nonzeros in the diagonal. If the
diagonal is very sparse, so that type 1 or type 2
storage is inappropriate, yet long enough that
the number of nonzeros leads to long vectors,
this computational procedure is superior to
the serial computation associated with type 3
diagonals.

Figures 2 and 3 show the CPU and storage re-
quirements for a diagonal of length 1000 as a func-
tion of density d , where d is the fraction of nonzeros
in the diagonal. A comparison of the two figures
shows that, unfortunately, one cannot identify inter-
vals of density where a particular diagonal type is
most efficient with respect to both resources. For in-
stance type 4 diagonals require the least CPU time
for d < 0.13, but require greater storage than type 2
diagonals for d > 0.02. Even in those regions where
one diagonal type is most efficient for both resources
(type 1 for very dense and type 3 or 4 for very sparse),
the boundaries of these regions vary with the length
of the diagonal.

Since the minimization of both resources is fre-
quently not possible and since different users may
attach different importances to the two resources, it
was decided to let the user influence the storage se-
lection through resource weighting factors. To im-
plement this decision, the initialization subroutine
Q4CMPCTD does the following for each diagonal:

1. Estimates the CPU and storage requirements for
each of the four candidate types

2. Applies a user-supplied weight to compute the
weighted resource requirement for each method

3. Selects the storage type that minimizes the sum
of the two weighted resource requirements

With the predicted storage and CPU require-
ments for the i th diagonal type denoted by si and
ci, the minimums over i denoted by smin and cmin,
and the user-specified weightings denoted by sw and
cw, then the normalized and weighted resource ri for
the ith diagonal type is computed as

Subroutine Q4CMPCTD computes an ri for each di-
agonal and selects the diagonal type which corre-
sponds to the minimum value. For this approach,
Q4CMPCTD must be able to estimate si and ci for

all diagonal lengths m and densities d. The storage
estimates are easily made in terms of a diagonal of
length m having z nonzeros:

I

s1 = m
s 2 = 2 + p
s3 = s4 = 22

where p is the least number of 64-bit words needed
to hold m bits.

The CPU estimates were obtained by timing the
computation for a range of diagonal length m and
density d. For types 1, 3, and 4 diagonals, single for-
mulas were obtained, but the cgmplexity of the ez-
pand used in type 2 diagonal computation required
a table of values (table I). The time in microseconds
(on the CYBER 205 computer) to perform the com-
putations implied in equations (1) and (2) for a single
diagonal can be estimated by

c1 = 8 + 0.040m
~3 = 5 + 1.6192
c4 = 18 + 0.20662

and c2 is obtained through linear interpolation for
each variable within table I. Since the values of c2
are used only in a selection process, their accuracy
to a few percent is sufficient.

I

~

Table I . CPU Times for Type 2 Diagonals as a
Function of Diagonal Length m and Density d

CPU time, psec

1 .o 36 61 511

Implementation
The matrix is passed to subroutine Q4CMPCTD

in its expanded form as an n x n d array. Each of
the n d diagonals is treated individually as the com-
pact representation, array C, is formed. Array C is
linear with the pertinent data for the Cth diagonal
stored behind that for the (C - 1)st diagonal. As il-
lustrated in figure 4, this can be, for type l , 2, or 3,
respectively, either the entire diagonal, the nonzero
bit pattern for the diagonal followed by the nonzeros,
or the nonzeros and index vector. Type 4 diagonals
are stored in the same way as type 3. A vector c o m -
pare with zero generates the bit pattern and provides
the number of nonzeros and density (fig. l(a)). If

3
..

the weighting procedure determines that the diago-
nal should be type 2, 3, or 4, a compress is performed
to extract the nonzeros (fig. l(b)). In addition, four
integers for each diagonal are stored in a separate ar-
ray. The first identifies the diagonal type; the second
is the number of nonzeros in the diagonal; the third
and fourth identify the positions of the first and last
nonzeros within the diagonal, respectively. The lat-
ter two integers provide a relatively simple means for
increasing efficiency. For the small price of storing
these two extra values per diagonal, the leading and
trailing zeros for each diagonal no longer have to be
included in type 1 or type 2 diagonal storage or com-
putation. The effect this can have is demonstrated
in the next section.

The initialization subroutine returns to the user
the CPU and storage estimates for the user-provided
weights. In addition, the estimates for the combi-
nations sw = 1, cw = 0 and sw = 0, cw = 1 are
returned to aid the user in adjusting the weights in
subsequent computations.

Once the compacted array C has been formed,
subroutine Q4CMPYD can use it and the four inte-
gers describing the diagonal to carry out the A by x
mu1 tiplication.

Weights

CW S W

0 1.0
0.3 .7

.5 .5

.7 .3
1 .o 0

Results
Results from a test matrix are presented in ta-

ble I1 to demonstrate the effect and control the user
has on the matrix storage and computational require-
ments by giving the statistics for different combina-
tions of sw and cw.

The test matrix is a sparse matrix resulting from
a finite element formulation with triangular elements
and three degrees of freedom at each node. The
matrix has 1086 equations and a bandwidth of 81.
Most of the diagonals are quite sparse. In fact, 57 of
them are less than 5 percent dense. Approximately
half of the nonzeros lie on the main diagonal and the
three closest subdiagonals. The average density is

Resources Diagonal selection
CPU time, Storage,

psec words Type 1 Type 2 Type 3 Type4
2.40 7254 2 79 0 0
2.30 7452 4 71 0 6
2.09 7905 7 58 0 16
1.96 8406 11 44 0 26
1.74 17455 54 0 1 26

7.8 percent. The effective density of each diagonal
is increased by considering only the portion of the
diagonal beginning with the first nonzero and ending
with the last one as discussed in the previous section.
Considered in this way, the average density of the
matrix is increased to 25.7 percent. There are now
only 11 diagonals whose effective density is less than
5 percent. Forty-four of the diagonals have a density
between 5 percent and 25 percent.

This example demonstrates the conflicting goals
of minimizing both resources. It also shows that use
of the weighting factors can give the user a rather
wide range of resource distributions. For instance, a
weighting of 1 for cw and 0 for sw leads to a CPU time
that is minimum but a storage requirement which
is 2.41 times that if one set sw = 1 and cw = 0.
However, setting sw = 1 yields a CPU time which
is 1.40 times the minimum. A reasonable middle
ground occurs when sw = cw = 0.5. In this case,
the CPU time is 1.20 times the minimum, and the
storage is 1.09 times the minimum.

Concluding Remarks
This paper has described a computational and

storage algorithm for sparse matrix multiplication on
a Control Data Corp. CYBER 205 computer. The
multiplication is performed using diagonals of the
matrix as the candidate vectors since this is where
nonzero patterns predominate in many scientific ap-
plications. Four types of diagonal sparsity patterns
are identified (dense, moderately dense, sparse and
long, and sparse and short) and storage and compu-
tational procedures developed for each.

Since, for most densities, no single diagonal type
minimizes both storage and CPU requirements, an
initialization subroutine selects the most “efficient”
type for the diagonal on the basis of estimated re-
source requirements and user-provided weights that
indicate the relative importance the user attaches to
each resource.

Table 11. Storage and Computational Requirements for 81 x 1086 Finite Element Matrix
[Average diagonal density, 25.7 percent]

I
I 4

The example given demonstrated that, for a given
matrix, the weights could be used to achieve mini-
mal CPU time (at the expense of storage) or mini-
mal storage (at the expense of CPU time) or some
compromise between the two. For an example ma-
trix (with average diagonal density of 25.7 percent),
a choice of weights which minimized CPU time gave
a CPU requirement that was only 70 percent of what
would have been required if one had chosen to min-
imize the storage, but at the expense of nearly 2.5
times the storage. On the other hand, a selection of
equal weights led to requirements which were within
20 percent of the respective minimums.

References

1. Hestenes, Magnus R.; and Stiefel, Eduard: Methods of
Conjugate Gradients for Solving Linear Systems. Res.
Paper 2379, J. Res. Natl. Bur. Stand., vol. 49, no. 6, Dec.
1952, pp. 409-436.

2. Kershaw, David S.: The Incomplete Cholesky-
Conjugate Gradient Method for the Iterative Solution of
Systems of Linear Equations. J. Comput. Phys., vol. 26,
no. 1, Jan. 1978, pp. 43-65.

3. Wilkinson, J. H.: The Algebraic Eigenvalue Problem.
Clarendon Press (Oxford), 1965, p. 388.

5

[3 2 0 0 4 0 21

Compare. NE.
[l 1 0 0 1 0 1]=BT

[O 0 0 0 0 0 01 Bit count (BT) = 4

(a) Vector compare to 0 results in bit vector; bit count of BT gives number of nonzeros in original vector.

[3 2 0 0 4 0 21

Compress by

[3 2 0 0 4 0 21

Gather by

(b) Vector compress or gather results in compacted form.

[3 2 4 21 [3 2 4 21

Expand by Scatter by

[3 2 0 0 4 0 21

[l 1 0 & / ” 0 1 0 11 \tl ,B 4

(c) Vector ezpund or scatter returns vector to uncompacted form.

Figure 1. CYBER 205 nontypical vector instructions.

6

500

400

300
Time,

psec

200

100

0 .2 .4 .6 .8 1 .o
Density

2000

1500

Figure 2. CPU time for diagonal with length 1000.

500

0 .2 .4 .6 .8 1 .o
Density

Figure 3. Storage requirements for diagonal with length 1000.

7

C

0

0

0

(1- 1)st
diagonal

B t h diagonal

C

0

0

0

(1 - 1)st
diagonal

-
64 bits

I _ _ .

I t h diagonal

(1 - 1)st
diagonal

B t h diagonal
nonzeros

1 th diagonal

index vector

Type 3 or 4

A@)=[8 3 0 0 1 21
BT =[1 1 0 0 1 1 0 . . . 0]

64 bits

Figure 4. Storage for A(!) with n - ! = 6 .

8

NASA National Aeronamcs and
Report Documentation Page

1. Report No.
NASA TM-4028

Space Adm~n~slral~on

2. Government Accession No.

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

3. Recipient's Catalog No.

11. Contract or Grant No.

13. Type of Report and Period Covered
Technical Memorandum

14. Sponsoring Agency Code

5. Report Date

March 1988

his page) 21. No. of Pages
9

6. Performing Organization Code

22. Price
A02

7. Author(s)
Jules J. Lambiotte, Jr.

8. Performing Organization Report No.

L-16403
IO. Workunit NO.

3. Performing Organization Name and Address
505-90-21-02 NASA Langley Research Center

I

15. Supplementary Notes

16. Abstract
This paper decribes the development of an efficient algorithm for computing the product of a matrix
and vector on a CYBER 205 vector computer. The desire to provide software which allows the user
to choose between the often conflicting goals of minimizing central processing unit (CPU) time or
storage requirements has led to a diagonal-based algorithm in which one of four types of storage
is selected for each diagonal. The candidate storage types employed were chosen to be efficient
on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse,
very sparse and short, or very sparse and long; however, for many densities, no diagonal type is
most efficient with respect to both resource requirements, and a trade-off must be made. For 'each
diagonal, an initialization subroutine estimates the CPU time and storage required for each storage
type based on results from previously performed numerical experimentation. These requirements
are adjusted by weights provided by the user which reflect the relative importance the user places
on the two resources. The adjusted resource requirements are then compared to select the most
efficient storage and computational scheme.

17. Key Words (Suggested by Authors(s))
Matrix-vec tor product
Sparse matrices
Diagonal storage
Vector computer

.9. Security Classif.(of this report) 120. Security ~~assif .(of

18. Distribution Statement
Unclassified-Unlimited

lASA FORM 1626 OCT 86 NASA-Langley, 1988

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

